\(\int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\) [611]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 349 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\frac {\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {b^2 (2 A b+5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (14 a A b+6 a^2 B-3 b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \]

[Out]

2/3*a*A*(a+b*sec(d*x+c))^(3/2)*sin(d*x+c)*cos(d*x+c)^(1/2)/d+1/3*(2*A*a^3+4*A*a*b^2+12*B*a^2*b+3*B*b^3)*(cos(1
/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+
c))/(a+b))^(1/2)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+b^2*(2*A*b+5*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(
1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)/d/cos(d
*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)-1/3*b*(2*A*a-3*B*b)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/d/cos(d*x+c)^(1/2)+1/
3*(14*A*a*b+6*B*a^2-3*B*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1
/2)*(a/(a+b))^(1/2))*cos(d*x+c)^(1/2)*(a+b*sec(d*x+c))^(1/2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)

Rubi [A] (verified)

Time = 1.56 (sec) , antiderivative size = 349, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3034, 4110, 4181, 4193, 3944, 2886, 2884, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\frac {\left (6 a^2 B+14 a A b-3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 d \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {\left (2 a^3 A+12 a^2 b B+4 a A b^2+3 b^3 B\right ) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {b^2 (5 a B+2 A b) \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {b (2 a A-3 b B) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2}}{3 d} \]

[In]

Int[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

((2*a^3*A + 4*a*A*b^2 + 12*a^2*b*B + 3*b^3*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/
(a + b)])/(3*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + (b^2*(2*A*b + 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(
a + b)]*EllipticPi[2, (c + d*x)/2, (2*a)/(a + b)])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]) + ((14*a*A*
b + 6*a^2*B - 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*d
*Sqrt[(b + a*Cos[c + d*x])/(a + b)]) - (b*(2*a*A - 3*b*B)*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Cos
[c + d*x]]) + (2*a*A*Sqrt[Cos[c + d*x]]*(a + b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3944

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4110

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Dist[1/(d*n), Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) + (
2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4181

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Dist[1/(m + n + 1), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x]
)^n*Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) + a
*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] &&
  !LeQ[n, -1]

Rule 4193

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Dist[C/d^2, Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a +
 b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fre
eQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)} \left (-\frac {3}{2} a (2 A b+a B)-\frac {1}{2} \left (a^2 A+3 A b^2+6 a b B\right ) \sec (c+d x)+\frac {1}{2} b (2 a A-3 b B) \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx \\ & = -\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a \left (14 a A b+6 a^2 B-3 b^2 B\right )-\frac {1}{2} a \left (a^2 A+9 A b^2+9 a b B\right ) \sec (c+d x)-\frac {3}{4} b^2 (2 A b+5 a B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {1}{3} \left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {1}{4} a \left (14 a A b+6 a^2 B-3 b^2 B\right )-\frac {1}{2} a \left (a^2 A+9 A b^2+9 a b B\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx+\frac {1}{2} \left (b^2 (2 A b+5 a B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx \\ & = -\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}-\frac {1}{6} \left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{6} \left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx+\frac {\left (b^2 (2 A b+5 a B) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \\ & = -\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {\left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt {b+a \cos (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{6 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (b^2 (2 A b+5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{2 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{6 \sqrt {b+a \cos (c+d x)}} \\ & = \frac {b^2 (2 A b+5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {\left (\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{6 \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}-\frac {\left (\left (-14 a A b-6 a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{6 \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \\ & = \frac {\left (2 a^3 A+4 a A b^2+12 a^2 b B+3 b^3 B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{3 d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {b^2 (2 A b+5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {\left (14 a A b+6 a^2 B-3 b^2 B\right ) \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}}-\frac {b (2 a A-3 b B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 32.53 (sec) , antiderivative size = 151943, normalized size of antiderivative = 435.37 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\text {Result too large to show} \]

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]

[Out]

Result too large to show

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 9.08 (sec) , antiderivative size = 3088, normalized size of antiderivative = 8.85

method result size
default \(\text {Expression too large to display}\) \(3088\)

[In]

int(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-1/3/d*(-14*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*
x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)^2+18*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(
((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)^2+14*A*(1/(a+b)*(b+a*cos(d*
x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*
cos(d*x+c)^2-14*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-cs
c(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)^2+18*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellipt
icF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)^2-12*B*(1/(a+b)*(b+a*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*
b^2*cos(d*x+c)^2-6*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)
-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)^2-3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Elli
pticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)^2+30*B*(1/(a+b)*(b+a*
cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/
(a+b))^(1/2))*a*b^2*cos(d*x+c)^2-14*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^
(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)+18*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x
+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)+14*A*
(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/
(a-b))^(1/2))*a^2*b*cos(d*x+c)-14*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1
/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)+18*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c
)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)-12*B*(1
/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a
-b))^(1/2))*a*b^2*cos(d*x+c)-6*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)
*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*cos(d*x+c)-3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*cos(d*x+c)+30*B*(1/(a+
b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I
/((a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)-2*A*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^2*sin(d
*x+c)-6*B*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^2*sin(d*x+c)-2*A*(1/(1+cos(d*x+c)))^(1/2
)*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)^3*sin(d*x+c)-2*A*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d
*x+c)*sin(d*x+c)-14*A*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a*b^2*cos(d*x+c)*sin(d*x+c)-6*B*(1/(1+cos(d
*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)*sin(d*x+c)-3*B*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)
*a*b^2*cos(d*x+c)*sin(d*x+c)-16*A*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1/2)*a^2*b*cos(d*x+c)^2*sin(d*x+c)+6
*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+
b)/(a-b))^(1/2))*a^3*cos(d*x+c)+3*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1
/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3*cos(d*x+c)-3*B*(1/(1+cos(d*x+c)))^(1/2)*((a-b)/(a+b))^(1
/2)*b^3*sin(d*x+c)+2*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+
c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)^2-6*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Elli
pticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3*cos(d*x+c)^2+12*A*(1/(a+b)*(b+a*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(a
+b))^(1/2))*b^3*cos(d*x+c)^2-6*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)
*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)^2+6*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^
(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)^2+3*B*(1/(a+b
)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*b^3*cos(d*x+c)^2+2*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(cot
(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c)-6*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*E
llipticF(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^3*cos(d*x+c)+12*A*(1/(a+b)*(b+a*c
os(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(((a-b)/(a+b))^(1/2)*(cot(d*x+c)-csc(d*x+c)),(a+b)/(a-b),I/((a-b)/(
a+b))^(1/2))*b^3*cos(d*x+c)-6*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*
(cot(d*x+c)-csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*cos(d*x+c))*(a+b*sec(d*x+c))^(1/2)/((a-b)/(a+b))^(1/2)/(b+a*
cos(d*x+c))/(1/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(1/2)/(1+cos(d*x+c))

Fricas [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b^2*cos(d*x + c)*sec(d*x + c)^3 + A*a^2*cos(d*x + c) + (2*B*a*b + A*b^2)*cos(d*x + c)*sec(d*x + c)
^2 + (B*a^2 + 2*A*a*b)*cos(d*x + c)*sec(d*x + c))*sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c)), x)

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**(3/2)*(a+b*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(cos(d*x+c)^(3/2)*(a+b*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

[In]

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(5/2), x)